Main Article Content

Abstract

Overexpression of Human Epidermal Receptor-2 (HER-2) is the cause of the development of breast cancer, so HER-2 can be a target for anticancer therapy. Trastuzumab is the drug of choice in inhibiting the HER-2 receptor and tyrosine kinase, but the weakness of this drug is that drug resistance can occur. Naringin has potential as a breast cancer therapy. The research aims to determine the inhibiting overexpression of the HER-2 receptor by naringin using in silico method. Molecular docking has been carried out by optimizing naringin and trastuzumab, preparing the HER-2 protein target (PDB ID 3PP0), validating the molecular docking protocol, and docking naringin and trastuzumab on HER-2. The research produced a binding energy of -8,66 kcal/mol, while the binding energies of the original ligand and trastuzumab to HER-2 were -9,94 kcal/mol and -5,87 kcal/mol, respectively. The binding energy shows that naringin has potential as an anti-breast cancer agent as indicated by its stronger affinity for HER2.

Keywords

Naringin Breast cancer HER-2 Molecular docking In silico

Article Details

Author Biographies

Abdurrahman Abdurrahman, Airlangga University

Universitas Airlangga

Muh. Agus Syamsur Rijal, Airlangga University

Departemen Ilmu Farmasi, Fakultas Farmasi, Universitas Airlangga, Surabaya, Indonesia
How to Cite
Abdurrahman, A., Rijal, M. A. S., Yusuf, H., Norhayati, & Rizaldi, G. (2024). In silico study of naringin as an anti-HER-2 receptor in the treatment of breast cancer. Borneo Journal of Pharmascientech, 8(2), 137-148. https://doi.org/10.51817/bjp.v8i2.535

References

  1. Artun, F. T., Karagoz, A., Ozcan, G., Melikoglu, G., Anil, S., & Sutlupinar, N. (2016). Anticancer plant extracts on HeLa and Vero cell lines. J Buon, 21(3), 720–725. https://www.jbuon.com/archive/21-3-720.pdf
  2. Bharti, S., Rani, N., Krishnamurthy, B., & Arya, D. S. (2014). Preclinical evidence for the pharmacological actions of naringin: a review. Planta Medica, 80(6), 437–451. https://doi.org/10.1055/S-0034-1368351
  3. Bronowska, A. K. (2011). Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. In Thermodynamics - Interaction Studies - Solids, Liquids and Gases. IntechOpen. https://doi.org/10.5772/19447
  4. Dai, X., Xiang, L., Li, T., & Bai, Z. (2016). Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. Journal of Cancer, 7(10), 1281–1294. https://doi.org/10.7150/JCA.13141
  5. Gevorgyan, A., Bregni, G., Galli, G., Zanardi, E., De Braud, F., & Di Cosimo, S. (2016). HER2-Positive Neuroendocrine Breast Cancer: Case Report and Review of Literature. Breast Care (Basel, Switzerland), 11(6), 424–426. https://doi.org/10.1159/000453572
  6. Halimatushadyah, E., Da, M., Muhammad Nursid, dan, Yani Tromol Pos I Surakarta, J. A., Tengah, J., Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan, B., Riset dan Sumber Daya Manusia Kelautan dan Perikanan, B., KSTubun Petamburan Jakarta Pusat, J. V., & Penulis, K. (2018). Sitotoksisitas dan Induksi Apoptosis Ekstrak Etanol Teripang Holothuria atra Jaeger, 1833 pada beberapa Sel Kanker. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 13(2), 101–110. https://doi.org/10.15578/JPBKP.V13I2.536
  7. Ho, P. C., Saville, D. J., & Wanwimolruk, S. (2001). Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. Journal of Pharmacy and Pharmaceutical Sciences, 4(3), 217–227.
  8. Idrees, S., & Ashfaq, U. A. (2014). Discovery and design of cyclic peptides as dengue virus inhibitors through structure-based molecular docking. Asian Pacific Journal of Tropical Medicine, 7(7), 513–516. https://doi.org/10.1016/S1995-7645(14)60085-7
  9. Iqbal, N., & Iqbal, N. (2014). Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Molecular Biology International, 2014, 1–9. https://doi.org/10.1155/2014/852748
  10. Jung, U. J., Leem, E., & Kim, S. R. (2014). Naringin: A Protector of the Nigrostriatal Dopaminergic Projection. Experimental Neurobiology, 23(2), 124. https://doi.org/10.5607/EN.2014.23.2.124
  11. Kanno, S. I., Shouji, A., Tomizawa, A., Hiura, T., Osanai, Y., Ujibe, M., Obara, Y., Nakahata, N., & Ishikawa, M. (2006). Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sciences, 78(7), 673–681. https://doi.org/10.1016/J.LFS.2005.04.051
  12. Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/NRD1549
  13. Lauro, M. R., De Simone, F., Sansone, F., Iannelli, P., & Aquino, R. P. (2007). Preparations and release characteristics of naringin and naringenin gastro-resistant microparticles by spray-drying. Journal of Drug Delivery Science and Technology, 17(2), 119–124. https://doi.org/10.1016/S1773-2247(07)50018-3
  14. Li, H. M., Xie, Y. H., Liu, C. Q., & Liu, S. Q. (2014). Physicochemical bases for protein folding, dynamics, and protein-ligand binding. Science China. Life Sciences, 57(3), 287–302. https://doi.org/10.1007/S11427-014-4617-2
  15. Li, H., Yang, B., Huang, J., Xiang, T., Yin, X., Wan, J., Luo, F., Zhang, L., Li, H., & Ren, G. (2013). Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicology Letters, 220(3), 219–228. https://doi.org/10.1016/J.TOXLET.2013.05.006
  16. Li, S., So, T. H., Tang, G., Tan, H. Y., Wang, N., Ng, B. F. L., Chan, C. K. W., Yu, E. C. L., & Feng, Y. (2020). Chinese Herbal Medicine for Reducing Chemotherapy-Associated Side-Effects in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.599073
  17. Liu, S.-Q., Ji, X.-L., Tao, Y., Tan, D.-Y., Zhang, K.-Q., & Fu, Y.-X. (2012). Protein Folding, Binding and Energy Landscape: A Synthesis. In Protein Engineering. IntechOpen. https://doi.org/10.5772/30440
  18. MacRaild, C. A., Daranas, A. H., Bronowska, A., & Homans, S. W. (2007). Global Changes in Local Protein Dynamics Reduce the Entropic Cost of Carbohydrate Binding in the Arabinose-binding Protein. Journal of Molecular Biology, 368(3), 822. https://doi.org/10.1016/J.JMB.2007.02.055
  19. Mohamed, E. A., Hashim, I. I. A., Yusif, R. M., Shaaban, A. A. A., El-Sheakh, A. R., Hamed, M. F., & Badria, F. A. E. (2018). Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. International Journal of Nanomedicine, 13, 1009. https://doi.org/10.2147/IJN.S154325
  20. Mutiah, R., Jati, T., Dewi, D., Suryadinata, A., & Qonita, K. (2021). Inhibition of Human Epidermal Growth Factor Receptor-2 (HER-2) from Pomelo (Citrus maxima) Flavonoid Compounds: an In Silico Approach. Indonesian Journal of Cancer Chemoprevention, 12(3), 148–160. https://doi.org/10.14499/INDONESIANJCANCHEMOPREV12ISS3PP148-160
  21. Norhayati, Andika, & Purwanto, A. (2023). In Silico Study of Bajakah Compounds (Spatholobus suberectus) to Protease SARS-CoV-2 Inhibitor. Jurnal Sains Dan Kesehatan, 5(2), 78–89. https://doi.org/10.25026/JSK.V5I2.950
  22. Norhayati, Ekowati, J., Diyah, N. W., Tejo, B. A., & Ahmed, S. (2023). Chemoinformatics approach to design and develop vanillin analogs as COX-1 inhibitor. Journal of Public Health in Africa, 14(Suppl 1). https://doi.org/10.4081/JPHIA.2023.2517
  23. Puspita, P. J., Liliyani, N. P. P., & Ambarsari, L. (2022). In Silico Analysis of Active Compounds of Avocado Fruit (Persea americana Mill.) as Tyrosinase Enzyme Inhibitors. Current Biochemistry, 9(2), 73–87. https://doi.org/10.29244/CB.9.2.3
  24. Rachmania, R. A., Supandi, S., & Cristina, F. A. D. (2016). ANALISIS PENAMBATAN MOLEKUL SENYAWA FLAVONOID BUAH MAHKOTA DEWA (Phaleria macrocarpa (Scheff.) Boerl.) PADA RESEPTOR α-GLUKOSIDASE SEBAGAI ANTIDIABETES. PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 13(02), 239–251. https://jurnalnasional.ump.ac.id/index.php/PHARMACY/article/view/1260/1107
  25. Rechner, A. R., Smith, M. A., Kuhnle, G., Gibson, G. R., Debnam, E. S., Srai, S. K. S., Moore, K. P., & Rice-Evans, C. A. (2004). Colonic metabolism of dietary polyphenols: Influence of structure on microbial fermentation products. Free Radical Biology and Medicine, 36(2), 212–225. https://doi.org/10.1016/j.freeradbiomed.2003.09.022
  26. Rizaldi, G., Hafid, A. F., & Wahyuni, T. S. (2023). Promising alkaloids and flavonoids compounds as anti-hepatitis c virus agents: a review. Journal of Public Health in Africa, 14(Suppl 1). https://doi.org/10.4081/JPHIA.2023.2514
  27. Rollando. (2017). Pengantar Kimia Medisinal.
  28. Stabrauskiene, J., Kopustinskiene, D. M., Lazauskas, R., & Bernatoniene, J. (2022). Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines 2022, Vol. 10, Page 1686, 10(7), 1686. https://doi.org/10.3390/BIOMEDICINES10071686
  29. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/CAAC.21660
  30. Todoric, J., Antonucci, L., & Karin, M. (2016). Targeting Inflammation in Cancer Prevention and Therapy. Cancer Prevention Research (Philadelphia, Pa.), 9(12), 895–905. https://doi.org/10.1158/1940-6207.CAPR-16-0209
  31. WHO. (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer